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A Two-stage State Transition Algorithm for Constrained Engineering Op-
timization Problems
Jie Han, Chunhua Yang, Xiaojun Zhou*, and Weihua Gui

Abstract: In this study, state transition algorithm (STA) is investigated into constrained engineering design opti-
mization problems. After an analysis of the advantages and disadvantages of two well-known constraint-handling
techniques, penalty function method and feasibility preference method, a two-stage strategy is incorporated into
STA, in which, the feasibility preference method is adopted in the early stage of an iteration process whilst it is
changed to the penalty function method in the later stage. Then, the proposed STA is used to solve three benchmark
problems in engineering design and an optimization problem in power-dispatching control system for the electro-
chemical process of zinc. The experimental results have shown that the optimal solutions obtained by the proposed
method are all superior to those by typical approaches in the literature in terms of both convergency and precision.

Keywords: Constrained engineering optimization, feasibility preference method, penalty function method, state
transition algorithm.

1. INTRODUCTION

Many real-world problem arising from different fields,
such as engineering design, structural optimization, con-
troller design, very large scale integration (VLSI) design,
economics, and location problems [1–5], can be regarded
as constrained optimization problems (COPs) [6]. With-
out a loss of generality, a general constrained optimization
problem (1) can be mathematically formulated as follows:

min
x∈Rn

f (x)

s.t. gi(x)≤ 0, i = 1, · · · ,q,
hi(x) = 0, i = q+1, · · · ,m,

li ≤ xi ≤ ui, i = 1, · · · ,n, (1)

where f (x) is the objective function, x=(x1,x2, · · · ,xn) is
the decision variable, li and ui represent the lower bound
and the upper bound of xi, respectively. There are q in-
equality constraints gi(x)(i = 1, · · · ,q) and m−q equality
constraints hi(x)(i = q+1, · · · ,m). In general, the objec-
tive function is defined on a search space, S, which is a
n-dimensional rectangle in Rn, and the proper domains of
variables are defined by their lower and upper bounds. The
set of solutions that satisfy all constraints is called feasible
region, which is described as follows:

F= {x ∈ Rn|gi(x)≤ 0,hi(x) = 0},
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and at any point x ∈ F, inequality constraints that satisfy
gi(x) = 0 are called active constraints at x. By extension,
equality constraints are considered active at all points of
F.

In order to simplify the constrained problem, equality
constraints are usually transformed into inequality con-
straints as follows:

|hi(x)|− ε ≤ 0, (2)

where ε > 0 is a given feasibility tolerance.
In order to verify the effectiveness and robustness of

optimization algorithms, it is necessary to study various
problems in complex COPs. In general, there are two ma-
jor types of optimization problems: test functions and en-
gineering design problems. The former type of problem
is artificial problem which is useful to evaluate charac-
teristics of optimization algorithms [7]. The engineering
design optimization problems are all from practical indus-
trial applications and each parameters have specific phys-
ical meanings. As one of the field which can be com-
monly encountered [8], constrained engineering optimiza-
tion problem always has nonlinear objective functions and
constraint functions, and the feasible region of such prob-
lems could be either one single bounded region or a collec-
tion of multiple disjointed region. Since the deterministic
methods are mainly depended on the gradient information,
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they are easily to drop into local optimum when solv-
ing constrained engineering optimization problems. In
order to deal with this type of problem, a huge number
of meta-heuristic algorithms have been proposed in last
decades. For instance, Coello [9] introduced a GA-based
technique that used self-adaptive penalty approach to find
the optimum of these constrained engineering optimiza-
tion problems. Guedria [10] compared the performance
of different algorithms, like HGA (hybrid genetic algo-
rithm) [11], CPSO (co-evolutionary particle swarm opti-
mization algorithm) [12], CAEP (cultural algorithms with
evolutionary programming) [13], SC (society and civiliza-
tion algorithm) [14], WCA (water cycle algorithm) [15]
and MBA (mine blast algorithm) [16], which are mainly
tested on engineering optimization problems. Although
the benchmark problems in engineering optimization have
the known global optimum and are hard to improve the so-
lution precision, there are still enough space for more ef-
fective algorithms that cost less computational effort and
obtain more accurate results.

In recent years, state transition algorithm (STA) [17–
21] inspiring from the concepts of state and state transition
has been proposed. Unlike most of the existing evolution-
ary algorithms, the basic STA is based on individual iter-
ative method. In basic STA, four state transformation op-
erators named rotation, translation, expansion and axesion
are used for forming a regular neighborhood start from an
current state, since there exists stochastic properties in the
state transition matrices, and then a sampling technique is
used to create a candidate state set. These four transfor-
mation operators have the ability of both local and global
search, and in the mean while, they are alternative used in
STA [22]. The effectiveness and efficiency of basic STA
have been testified when compared with other state-of-art
intelligent optimization methods, like particle swarm op-
timization (PSO) and genetic algorithm (GA) [20]. Thus,
the constrained engineering optimization problems using
STA are studied in this paper.

The remainder of the paper is organized as follows.
Section 2 presents the detail of basic STA and in Sec-
tion 3, the advantages and disadvantages of two well-
known constraint-handling techniques are discussed and
a two-stage strategy is proposed to solve constrained opti-
mization problem. Then, engineering design optimization
problems are given to evaluate the performance of STA in
Section 4. Finally, the paper is summarized in Section 5.

2. BASIC STATE TRANSITION ALGORITHM

Basic state transition algorithm (STA) is a recently pro-
posed optimization algorithm that is based on the concepts
of state transition and state space representation in control
theory. In the process of solving optimization problems
by STA, every solution is regarded as a state, and the up-
date of current solution is treated as a state transition. In

general, the framework of state transition algorithm can be
defined as follows:{

xk+1 = Akxk +Bkuk,
yk+1 = f (xk+1),

(3)

where xk ∈ Rn represents a state, corresponding to a
candidate solution; Ak and Bk are state transition matri-
ces with appropriate dimensions, which usually stand for
transformation operators; uk is a function of xk and histor-
ical states; f is the objective function or evaluation func-
tion.

In order to generate candidate solution, four special
state transformation operators are designed in basic STA.

1) Rotation transformation

xk+1 = xk +α
1

n∥xk∥2
Rrxk, (4)

where α is a positive constant, called rotation factor; Rr

∈ Rn×n, is a random matrix with its elements belonging
to the range of [-1, 1] and ∥ · ∥2 is the 2-norm of a vec-
tor. The rotation transformation has the function of local
search which means it can generate candidate solution in
a domain of hypersphere with a given radius α .

2) Translation transformation

xk+1 = xk +βRt
xk−xk−1

∥xk−xk−1∥2
, (5)

where β is a positive constant, called translation factor; Rt

∈ R is a random variable with its elements belonging to
the range of [0,1]. The translation transformation is de-
signed for a line search which is only performed when a
better solution can be found by other transformation oper-
ators.

3) Expansion transformation

xk+1 = xk + γRexk, (6)

where γ is a positive constant, called expansion factor;
Re ∈ Rn×n is a random diagonal matrix with its elements
obeying the Gaussian distribution. The expansion trans-
formation is for global search which can search in the
whole space with probability.

4) Axesion transformation

xk+1 = xk +δRaxk, (7)

where δ is a positive constant, called axesion factor; Ra

∈ Rn×n is a random diagonal matrix with its elements
obeying the Gaussian distribution and only one random
position having nonzero value. The axesion transfor-
mation is proposed to strengthen the single dimensional
search as well as global search.

Pseudo-code of basic STA for unconstrained optimiza-
tion problems is given in Algorithm 1.

In Algorithm 1, SE is called search enforcement, repre-
senting the times of transformation by a certain operator.
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Algorithm 1: Pseudo-code of basic STA for uncon-
strained optimizaiton problems.

Input:
maxiter: the maximum number of iterations
SE: search enforcement
Best: the initial solution

Output:
Best∗: the optimal solution

1: for iter = 1 to maxiter do
2: if α < αmin then
3: α ← αmax

4: end if
5: Best← expansion(funfcn,Best,SE, · · · )
6: Best← rotation(funfcn,Best,SE, · · · )
7: Best← axesion(funfcn,Best,SE, · · · )
8: α ← α

fc
9: end for

10: Best∗← Best

Algorithm 2: Pseudo-code of expansion transformation
in Algorithm 1.

Input:
oldBest: the best solution in the last transformation

Output:
Best: the best solution

1: f Best← feval(funfcn,oldBest)
2: State← op_expand(Best,SE, · · · )
3: newBest←min(State)
4: f GBest← feval(funfcn,newBest)
5: if f GBest < f Best then
6: f Best← f GBest
7: Best← newBest
8: State← op_translate(oldBest,Best,SE, · · · )
9: newBest←min(State)

10: f GBest← feval(funfcn,newBest)
11: if f GBest < f Best then
12: f Best← f GBest
13: Best← newBest
14: end if
15: end if

In STA, the rotation factor α is reducing periodically from
a maximum value αmax to a minimum value αmin in an ex-
ponential way with base fc, which is called lessening coef-
ficient. The changeable rotation factor can not only speed
up the process of finding optimal solution but also increase
the accuracy of the solution. For unconstrained optimiza-
tion problems, the “greedy criterion" is used to accept a
new best solution. Algorithm 2 illustrates the process of
expansion function in Algorithm 1 which is similar to the
process of rotation function and axesion function.

To achieve a better understanding of the detailed steps
of state transition algorithm, the readers can download

the STA toolbox via the following link: http://www.

mathworks.com/matlabcentral/fileexchange/

52498-state-transition-algorithm, and Zhou has
shown how to use the Matlab toolbox for continuous state
transition algorithm [23].

3. CONSTRAINT-HANDLING TECHNIQUES

Since the basic STA is essentially an unconstrained op-
timization procedure, it is necessary to find additional
mechanisms to deal with the constraints. There are a
large number of ways to cope with constraints, and readers
can refer to and the references therein for details [24–27].
In this study, we focus on the following two well-known
constraint-handling techniques widely used in COPs.

3.1. Penalty function method
The most common way to handle constraints is the

penalty function method. The idea behind this method is
to transform constrained optimization problems into un-
constrained ones by adding certain terms to the objective
function based on the amount of constraint violation[15]:

F(x) = f (x)+
q

∑
i=1

piGi +
m

∑
j=q+1

p jH j, (8)

where pi, p j are penalty factors,

Gi = max{0,gi(x)}κ ,H j = max{0, |h j(x)|− ε}κ ,

(9)

where κ is normally 1 or 2.

3.2. Feasibility preference method
Based on the preference of feasible solutions over in-

feasible solutions, Deb [28] proposed the feasibility pref-
erence method, in which, two solutions are compared ac-
cording to the following criteria:

1) any feasible solution is preferred to any infeasible so-
lution;

2) among two feasible solutions, the one having better ob-
jective function value is preferred;

3) among two infeasible solutions, the one having smaller
constraint violation is preferred.

3.3. Advantages and disadvantages
The main limitation of the penalty function method is

that it requires an appropriate selection of the penalty fac-
tors. If the penalty factors are large, it is more likely to
obtain a feasible solution; however, in this case, the ex-
ploration ability is discouraged. If the penalty factors are
as small as possible, they are ideal to get an optimum lo-
cated at the boundary of the feasible region, but it may risk
an infeasible solution in the end for other cases.

http://www.mathworks.com/matlabcentral/fileexchange/52498-state-transition-algorithm
http://www.mathworks.com/matlabcentral/fileexchange/52498-state-transition-algorithm
http://www.mathworks.com/matlabcentral/fileexchange/52498-state-transition-algorithm
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A big advantage of the feasibility preference method
is that it is most likely to obtain a feasible solution since
an infeasible solution can never be accepted once a feasi-
ble solution is captured. However, it neglects some valu-
able information contained in infeasible solutions and it
becomes extremely difficult to find a better feasible solu-
tion than current feasible solution at the later stage of the
iteration process.

3.4. Two-stage strategy for constrained STA
The above mentioned constraint-handling techniques,

which can be considered as criteria to choose the “best”
state, are incorporated into basic STA. Then, to draw on
each other’s strengths, we give a two-stage strategy for
constrained STA, namely, in the early stage of an itera-
tion process, the feasibility preference method is adopted
to make the solution tend to be feasible. In the later stage,
we change it to the penalty function method so as to make
use of the information of all candidate solutions and obtain
the best one.

To quantify the constraint violation (G(x))in the feasi-
bility preference method, the following formula is used

G(x) =
q

∑
i=1

max{0,gi(x)}

+
m

∑
j=q+1

max{0, |h j(x)|− ε}, (10)

which can be considered as the distance of a solution x
from the boundaries of the feasible space.

The main procedure of the constrained STA with a two-
stage strategy is given in Algorithm 3.

In Algorithm 3, maxiter is the maximum number of it-
erations, ρ ∈ [0,1] is used to control the ratio of feasibility
preference and penalty function methods in an iteration
process, and f lag = 1 means that the feasibility prefer-
ence method is adopted while penalty function method is
used when f lag = 0. The detailed selection mechanism
is described in Algorithm 4, and the “operator” represents
those four transformation operators in STA.

The two-stage strategy not only can get the optimal so-
lution but also has better performance than single strategy
[7]. Since the prominent search ability and outstanding so-
lution precision of two-stage strategy, we use this method
to deal with engineering design optimization problems.

4. APPLICATIONS IN ENGINEERING
CONSTRAINED PROBLEMS

In this paper, the STA with two-stage strategy is used
to solve constrained engineering optimization problems.
With the purpose of evaluating the performance of this al-
gorithm, we chose 3 benchmark problems in engineering
design and an optimization problem in power-dispatching
control system for the electrochemical process of zinc.

Algorithm 3: Pseudo-code of constrained STA with a
two-stage strategy.

Input:
maxiter: the maximum number of iterations
SE: search enforcement
ρ: the ratio of two methods
Best: the initial solution

Output:
Best∗: the optimal solution

1: Best← generate a initial solution
2: for iter = 1 to maxiter do
3: if α < αmin then
4: α ← αmax

5: end if
6: if iter < ρ×maxiter then
7: f lag=1
8: else f lag=0
9: end if

10: Best← expansion(funfcn,Best,SE, f lag · · · )
11: Best← rotation(funfcn,Best,SE, f lag · · · )
12: Best← axesion(funfcn,Best,SE, f lag · · · )
13: α ← α

fc
14: end for
15: Best∗← Best

Algorithm 4: Pseudo-code of two-stage selection mecha-
nism in Algorithm 3.

1: State← operator(Best,SE, f lag, · · · )
2: if f lag = 1 then
3: Best← slection1(State)
4: else
5: Best← slection2(State)
6: end if

These problems consist of objective functions and con-
straints with various types and nature, such as quadratic,
cubic, polynomial and nonlinear.

In the same time, several well-known optimizers are
used for comparison. It is worth pointing that the results
calculated by built-in GA in MATLAB (which is based
on globally convergent augmented lagrangian barrier tech-
nique) are obtained during this study. All of the methods
are run under the MATLAB (Version R2010b) software
platform. The parameter settings of STA are analyzed in
[20] based on numerical experiments, which are given as
follows: αmax = 1, αmin = 1e-4, β = 1, γ = 1, δ = 1,
f c = 2, SE = 30. For the parameters in handling con-
straints, κ = 2 is used, and the penalty factors of three
benchmark problems are fixed at realmax (the largest dou-
ble precision floating point number in MATLAB) to re-
strict an infeasible solution as heavily as possible, while
in power-dispatching control system, we set the penalty
factor as 1e6 to satisfy practical application. The ratio
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ρ = 0.5 is used in this study so that in the half later stage
the penalty function method is adopted. The feasibility
tolerance ε = 1e-4 is used in this study. The maximum
number of iterations is 2000. For fairness, the population
size is 30 and the maximum number of generations is 6000
in GA. All methods are run independently for 20 trails.
To evaluate the performance of these methods, the exper-
imental results include the best solution, the best, mean,
standard deviation (st.dev) and worst objective function
values in 20 runs.

4.1. Welded beam design
The welded beam design is a classic test problem for

constrained optimization which is aimed to minimize the
fabricating cost of welded beam ( f ) and satisfy constraints
about shear stress (τ), bending stress in the beam (θ ),
buckling load on bar (Pc), end deflection of the beam (δ )
and side constraints [30]. The variables associated with
this problem are: x1 = thickness of the weld (h), x2 =
length of the welded joint (l), x3 = width of the beam (t),
x4 = thickness of the beam (b). Fig. 1 shows the welded
beam structure.

The mathematical formulation of this problem is as fol-
lows:

min f (X) = 1.10471x2
1x2+0.04811x3x4(14+ x2) (11)

s.t. g1(X) = τ(X)− τmax ≤ 0,

g2(X) = σ(X)−σmax ≤ 0,

g3(X) = x1− x4 ≤ 0,

g4(X) = 0.125− x1 ≤ 0,

g5(X) = δ (X)−0.25≤ 0,

g6(X) = P−Pc(X)≤ 0,

g7(X) = 0.10471x2
1 +0.04811x3x4(14x2)−5

≤ 0,

where

0.1≤ x1 ≤ 2,0.1≤ x2 ≤ 10,

0.1≤ x3 ≤ 10,0.1≤ x4 ≤ 2,

τ(X) =

√
τ2

1 +2τ1τ2(
x2

2R
)+ τ2

2 ,

τ1 =
P√

2x1x2
, τ2 =

MR
J

,

M = P(L+
x2

2
),

J(X) = 2{
√

2x1x2[
x2

2

4
+(

x1 + x3

2
)2]},

R =

√
x2

2

4
+(

x1 + x3

2
)2,

σ(X) =
6PL
x4x2

3
, δ (X) =

6PL3

Ex3
3x4

,

Pc(X) =
4.013E

√
x2

3x6
4

36

L2 (1− x3

2L

√
E

4G
),

b

h

I

L b

t

P

Fig. 1. The design of welded beam,
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Fig. 2. The iterative curve of welded beam design.

G = 12×106 ps, E = 30×106 ps,

P = 6000 lb, L = 14 in.

There are many algorithms used to optimize this prob-
lem, such as: HGA, CPSO, hybrid Nelder-Mead sim-
plex search and particle swarm optimization (NM-PSO)
[31], CAEP, SC, WCA, MBA, improved accelerated PSO
(IAPSO) [10] and so on. The optimal solution obtained
by STA is X = [0.20532536, 3.26035648, 9.03664424,
0.20572991] with corresponding function value equal
to f (X) = 1.69563970 and constraints [g1(X), g2(X),
. . . , g7(X)] = [-0.10520197, -0.17417862, -4.04330102, -
3.45179021, -0.08032536, -0.22831066, -0.0339737].

The results of the experiments are shown in Table 1,
Table 2 and Fig. 2. Table 1 shows the comparison of the
best solution of STA and other previously reported studies.
Table 2 shows the statistical optimization results of these
algorithms. The iterative curve of average results obtained
by STA is given in Fig. 2.

From Table 1, STA offers better results compared to any
other earlier solutions reported in the literature. And the
best results obtained by STA are all in the inner space of
feasible region instead of the boundary of feasible region,
which shows the robustness of STA. And in Table 2, the
mean solution detected by STA is better than other solu-
tions found by other techniques. Fig. 2 illustrates the fit-
ness values with respect to the number of iterations for the
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Table 1. Comparison of the best solution of welded beam design problem.

DV1 He [12] Coello [13] Yuan [11] Zahara [31] Eskandar
[15]

Sadollah
[16]

Guedria
[10] STA

x1 0.202369 0.205700 0.205700 0.205830 0.205728 0.205729 0.205730 0.20532536
x2 3.544214 3.470500 3.470500 3.468338 3.470522 3.470493 3.470489 3.26035648
x3 9.048210 9.036600 9.036600 9.036624 9.036620 9.036626 9.036624 9.03664424
x4 0.205723 0.205700 0.205700 0.205730 0.205729 0.205729 0.205730 0.20572991

g1(x) -13.655547 -0.000472 -769.3403 -0.025250 -0.034128 -0.001614 -1.05e-10 -0.10520197
g2(x) -78.814077 -0.001561 4.481548 -0.053122 -3.49e-05 -0.016911 -6.91e-10 -0.17417862
g3(x) -3.35e-03 0.000000 0.000000 0.000100 -1.19e-06 -2.40e-07 -7.66e-15 -4.04330102
g4(x) -3.424572 -3.432984 -3.433213 -3.433168 -3.432980 -3.432982 -3.432984 -3.45179021
g5(x) -0.077369 -0.080730 -0.080700 -0.080830 -0.080728 -0.080729 -0.080730 -0.08032536
g6(x) -0.235595 -0.235540 -0.235538 -0.235540 -0.235540 -0.235540 -0.235540 -0.22831066
g7(x) -4.472858 -0.000779 2.603347 -0.031555 -0.013503 -0.001464 -5.80e-10 -0.03397937
f (x) 1.728024 1.724852 1.724852 1.724717 1.724856 1.724853 1.724852 1.69563970

1DV: stands for design variables.

Table 2. Comparison of the statistical results of welded beam design problem.

Method Best Mean Worst SD
Coello [13] 1.724852 1.971809 3.179709 4.43e-01

He [12] 1.728024 1.748831 1.782143 1.29e-02
Liu [32] 1.724852 1.724852 1.724852 6.70e-16

Zahara [31] 1.724717 1.726373 1.733393 3.50e-03
Lampinen [33] 1.733461 1.768158 1.824105 2.21e-02
Eskandar [15] 1.724856 1.726427 1.744697 4.29e-03
Kashan [34] 1.724852 1.724852 1.724852 7.11e-15

Sadollah [16] 1.724853 1.724853 1.724853 6.94e-19
Guedria [10] 1.724852 1.724853 1.724862 2.02e-06

STA 1.6956397 1.7160908 1.7530472 1.83e-02

welded beam design problem. Note that STA shows better
converging behavior due to the efficiency of its searching
mechanism and handling technique.

4.2. Pressure vessel design
This problem is aimed to design a cylindrical vessel

which is capped at both ends by hemispherical heads, as
shown in Fig. 3 [35]. The total costs including the cost
of material, forming and welding are optimized to find the
minimum value. There are four design variables: x1 =
thickness of the pressure vessel (Ts), x2 = thickness of the
head (Th), x3 = inner radius of the vessel (R), x4 = length
of the vessel without heads (L).

The mathematical formulation of this problem is as fol-
lows:

min f (X) = 0.6224x1x3x4 +1.7781x2x2
3

+3.1661x2
1x4 +19.84x2

1x3, (12)

s.t. g1(X) =−x1 +0.0193x3 ≤ 0,

g2(X) =−x2 +0.00954x3 ≤ 0,

g3(X) =−πx2
3x4−

4
3

πx3
3 +1296000≤ 0,

Th

R R

Ts

L

Fig. 3. The design of pressure vessel.

g4(X) = x4−240≤ 0,

where 1× 0.0625 ≤ x1, x2 ≤ 99× 0.0625, 10 ≤ x3, x4 ≤
200.

Similarly, the pressure vessel design problem has been
studied previously using co-evolutionary differential evo-
lution (CDE) [41], CPSO, hybrid particle swarm op-
timization (HPSO) [37], NM-PSO, WCA, MBA and
so on. The best results obtained by STA is f (X) =
5886.45436 corresponding to X = [0.77854, 0.38484,
40.3389, 199.775349] and constraints [g1(X), g2(X),
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Fig. 4. The iterative curve of pressure vessel design.

. . . , g4(X)] = [-2.1123e-07, -6.2039e-06, -110.9246, -
40.2465].

The comparison of these algorithms and STA are given
in Table 3 and Table 4. It worth to note that the feasibility
rate of GA is only 40 percent, which means there are only
8 feasible solutions in 20 runs. However, the feasibility
rate of STA can reach 100 percent, which indicates STA
has high reliability. As can be seen from Table 3 and Ta-
ble 4, STA converge once again to a new solution better
than others. Moreover, the best solution obtained by Za-
hara violates the first and the second constraints and then
can not be compared to other best solutions. Fig. 4 depicts
the reduction of fitness values versus the number of iter-
ations of STA. In terms of the information of Fig. 4, we
can find that STA has the strong ability of exploration and
exploitation which can get rid of the stagnation point and
obtain the global optimal point.

4.3. Tension/Compression spring design
This problem is aimed to minimize the weight of a ten-

sion/compression spring [41, 42], as shown in Fig. 5. In
this design, the constraints include minimum deflection,
shear stress, surge frequency, limits on outside diameter
and some variables. There are three design variables: x1

= mean coil diameter, x2 = the wire diameter, and x3 = the
number of active coil.

The mathematical formulation of this problem is as fol-
lows:

min f (X) = (x3 +2)x2x2
1 (13)

s.t. g1(X) = 1− x3
2x3

71785x4
1
≤ 0,

g2(X) =
4x2

2− x1x2

12566(x2x3
1− x4

1)
+

1
5108x2

1
−1≤ 0,

g3(X) = 1− 140.45x1

x2
2x3

≤ 0,

g4(X) =
x1 + x2

1.5
−1≤ 0,

where 0.05≤ x1 ≤ 2, 0.25≤ x2 ≤ 1.3, 2≤ x3 ≤ 15.
There are many researchers using different optimization

algorithms to solve this problem. These algorithms in-
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Fig. 5. The design of tension/compression spring.
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Fig. 6. The iterative curve of tension/compression spring
design

clude genetic algorithm based co-evolution model (GA1)
[9], CPSO, SC, improved harmony search (IHS) [43],
gaussian quantum-behaved particle swarm optimization
(G-QPSO) [38] and so on. The best results obtained by
STA is f (X) = 0.01266534 corresponding to decision vari-
able X = [ 0.0516800, 0.3565001, 11.3018335] and con-
straints [g1(X), g2(X), . . . , g4(X)] = [-6.218e-06, -1.691e-
06, -4.0533150, -0.7278799].

The results of the experiments are shown in Table 5, Ta-
ble 6 and Fig. 6. The STA still have better solution than
other algorithms. According to the statistical results in
Table 5, STA is the most stable algorithm with the small-
est value of the standard deviation. Fig. 6 also shows the
same results which the STA has both good whole astrin-
gency and fast convergence speed. It is worth pointing that
the fitness value of STA is still decreasing in the later iter-
ations and this phenomenon shows that STA can improve
the precision of the results and find better solutions of this
engineering problem.

4.4. Power-dispatching control system in the electro-
chemical process of zinc

In metallurgical industry, the electrochemical process of
zinc (EPZ) is a large power-consuming process that ac-
counts for 80% of the total electrical energy consumption
of hydrometallurgy process. According to time-sharing
price counting policy of electric power, if the electrochem-
ical process of zinc runs with low current density in the
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Table 3. Comparison of the best solution of pressure vessel design problem.

DV Huang [41] He [12] Zahara [31] Coelho
[38]

Sadollah
[16]

Guedria
[10] GA1 STA

x1 0.8125 0.8125 0.8036 0.8125 0.7802 0.8125 0.8099 0.77854
x2 0.4375 0.4375 0.3972 0.4375 0.3856 0.4375 0.4004 0.38484
x3 42.0984 42.0913 41.6392 42.0984 40.4292 42.0984 41.9616 40.3389
x4 176.6376 176.7465 182.4120 176.6372 198.4964 176.6366 178.3500 199.775349

g1(x) -6.67e-07 -1.37e-06 3.65e-05 -8.79e-07 0 -4.09e-13 -2.09e-05 -2.1123e-07
g2(x) -3.58e-02 -3.59e-04 3.79e-05 -3.58e-02 0 -3.58e-2 -5.39e-05 -6.2039e-06
g3(x) -3.705123 -118.7687 -1.5914 -0.2179 -86.3645 -1.39e-07 -54.8632 -110.9246
g4(x) -63.3623 -63.2535 -57.5879 -63.3628 -41.5035 -63.3634 -61.65 -40.2465
f (x) 6059.7340 6061.0777 5930.3137 6059.7208 5889.3216 6059.7143 5942.2806 5886.45436

1Numerical results obtained by GA are carried out during this study.

Table 4. Comparison of the statistical results of pressure vessel design problem.

Method Best Mean Worst SD
He [12] 6061.0777 6147.1332 6363.8041 86.4500

Zahara [31] 5930.3137 5946.7901 5960.0557 9.1610
Coelho [38] 6059.7208 6440.3786 7544.4925 448.4711
Huang [41] 6059.7340 6085.2303 6371.0455 43.0130

Eskandar [15] 6059.8553 6070.5884 6090.6114 11.3753
Sadollah [16] 5889.3216 6200.6477 6392.5062 160.34
Guedria [10] 6059.7143 6068.7539 6090.5314 14.0057

GA 5942.2806 6095.8824 6344.7175 126.6900
STA 5886.45436 6042.30370 6377.87825 150.8838

Table 5. Comparison of the best solution of tension/compression spring design problem.

DV Belegundu
[40] Arora [39] Coello [9] Saini [44] Ray [14] Mahdavi

[43] He [12] STA

x1 0.05 0.053396 0.051480 0.050417 0.052160 0.051154 0.051728 0.0516800
x2 0.315900 0.399180 0.351661 0.321532 0.368159 0.349871 0.357644 0.3565001
x3 14.25 9.185400 11.632201 13.979915 10.648442 12.076432 11.244543 11.3018335

g1(x) -0.001267 -0.001234 -0.003337 -0.001926 -7.45e-09 0.000000 -0.000845 -6.218e-06
g2(x) -0.003782 -0.000018 -0.000110 -0.012944 -3.68e-09 -0.000007 -1.26e-05 -1.691e-06
g3(x) -3.938302 -4.123832 -4.026318 -3.899433 -4.075805 -4.027840 -4.051300 -4.0533150
g4(x) -0.756067 -0.698283 -0.731239 -0.752034 -0.719787 -0.736572 -0.727090 -0.7278799
f (x) 0.0128334 0.0127303 0.0127048 0.0130603 0.0126692 0.0126706 0.0126747 0.01266534

Table 6. Comparison of the statistical results of tension/compression spring design problem.

Method Best Mean Worst SD
Coello [9] 0.01270478 0.01276920 0.01282208 3.9390e-05
Coello [45] 0.0126810 0.012742 0.012973 5.900e-05
Ray [14]] 0.0126692 0.0129227 0.0167172 5.1985e-05
He [12] 0.0126747 0.012730 0.012924 5.1985e-05

Monts [46] 0.012698 0.13461 0.164850 9.6600e-04
coelho [38] 0.012669 0.013854 0.018127 1.341e-03

Lampinen [33] 0.012670 0.012703 0.012790 2.700e-05
STA 0.01266534 0.01268592 0.01272968 2.1672e-05
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Fig. 7. The distributed architecture of optimal power-
dispatching control system.

period of high price, and with high current density in the
period of low price, then the cost of power consumption
will be decreased. However, if the current density is too
high or too low with respect to the technological require-
ments, it will lead to high power consumption and low
current-efficiency. So, it is necessary to seek for optimal
power-dispatching control system (OPDCS) in different
pricing periods [47, 48].

In this paper, we take example of the electrolytic zinc
process in Zhuzhou Smeltery, located in Hunan Province,
China. This problem aims to minimize the cost of power
consumption and satisfies the constraints about daily out-
put and technic parameters [49]. The distributed archi-
tecture of OPDCS is shown in Fig. 7. The OPDCS con-
sists of an optimal power-dispatching system (OPDS) and
a distributed rectifier control system (DRCS). The DRCS
is composed of two industrial computers (IC1 and IC2),
seven direct digit controllers (DDC, including DDC1,
DDC2,. . ., and DDC7), rectifiers and so on. Each DDC
controls the converting process in each series of cells [48].

In this problem, there are four pricing periods everyday
and each period has seven plants to implement electro-
chemical processes of zinc. So, there are 28 design vari-
ables : Dki j = current density (A/m2), i = 1,2,3,4 = the
number of period, j = 1,2,3, · · · ,7 = the number of plant.
The mathematical formulation of this problem at present
is as follows:

minJ(Dk) =
4

∑
i=1

PWi×Ti×Pi + J0 (14)

s.t. h(Dk) =
4

∑
i=1

7

∑
j=1

q×Dli j×ηi j×Ti = G0,

where

PWi =
7

∑
j=1

Ui j×Dli j×N j,Dli j = Dki j×B j×S0,

Ui j = a0 +a1×Dki j,

ηi j = b0+b1×Dki j+b2×Dk2
i j+b3×Dk3

i j+b4×Dk4
i j,

Ti =
[
5 4 7 8

]
,

Pi = 0.3059×
[
1 1.6 1.4 0.35

]
, G0 = 960.

N j =
[
240 240 246 192 208 208 208

]
,

B j =
[
34 46 54 56 56 57 57

]
,

S0 = 1.13,q = 1.2202,a0 = 2.76284,a1 = 0.00093,

b0 = 0.785037,b1 = 5.855×10−4,b2 = 2×10−6,

b3 = 3.2094×10−9,b4 =−1.9052×10−12,

Dkmin ≤ Dk ≤ Dkmax,Dkmin = 200,Dkmax = 650.

In these formulations,

PWi – the electrical load (kW ) in the ith period.
Ti – the hours (h) of the ith period.
Pi – the electricity price (¥/kWh) of the ith period.
Ui j – the cell voltage (V ) of the jth plant in the ith pe-

riod, a0 and a1 are obtained by recursive least squares
method.

Dli j – the magnitude of the current (A) of the electrolysis
process of the jth plant in the ith period.

N j – the number of cells in the jth plant.
B j – the number of plates in a cell in the jth plant.
S0 – the area (m2) of a negative plate.
G0 – the expected daily output of zinc (t).
ηi j – the current-efficiency of the jth plant in the ith pe-

riod, b0, b1, b2, b3 and b4 are also obtained by recur-
sive least squares method.

q – the electrochemical equivalent of zinc (g/Ah).
Dkmin – the allowed minimum current density (A/m2) of

the electrochemical process of zinc to avoid dissolv-
ing zinc deposited on cathodes at too low current den-
sity.

Dkmax – the allowed maximum current density (A/m2) of
the electrochemical process of zinc, which depends
on the capacity of equipment and power supply.

J0 – the basic tariff charge of electrochemical process of
zinc. There are two types of J0: (i) considering the
capacity of transformer, J0 = kc×R, where kc is the
fixed parameter, R is the total capacity of transform-
ers; (ii) considering the maximum demand of electri-
cal load, J0 = kd ×PWmax, where kd is the fixed pa-
rameter, PWmax is the maximum electrical load in 4
periods.

The basic tariff charge in this paper is considered the ca-
pacity of transformer (kc = 2/3, R = 246000). This prob-
lem only be studied by several researches and its math-
ematical formulations in these paper are all different, so
we compare the performance of STA with built-in GA in
MATLAB which is carried out during this study. It is
worth pointing out that the constraint in this problem is an
equality constraint, and when using STA solve this prob-
lem, the penalty factor in the second stage of constraint
handling technique is chosen 10e6 based on many tests.
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Fig. 8. The iterative curve of power-dispatching control
system for the electrochemical process of zinc.

The best results obtained by STA is f (X) = 9.5825e+05
corresponding to decision variable X = [629, 200, 276,
646, 649, 200, 200, 649, 649 200, 200, 649, 647, 200,
200, 650, 624, 200, 267, 642, 324, 200, 200, 649, 537,
200, 200, 650] and constraint h(X) = 960.0785. The re-
sults of the experiments are shown in Table 7, Table 8 and
Fig7.

As shown in Table 7, the STA can obtain better solution
than GA which means STA can produce similar number
of zinc with less money. And through analyzing the best
solution of STA, we can find that in the period of high
price, the current density is low and in the period of low
price, the current density is high. This phenomenon is
same as previously mentioned. Table 8 shows that STA
has better results than GA in terms of best, mean and worst
solutions. Fig. 8 also show that the STA has outstanding
performance.

Based on the experimental results, the optimal solutions
obtained by proposed method are all superior to other typ-
ical approaches. This is due to the fact that when solving
constrained engineering optimization problems, it is easy
to fall into the local optimal solution in the search process,
and the state transition algorithm, as one of the global op-
timization method, not only has a special global search
operator (expansion operator) to prevent premature con-
vergence but also designs a local search operator (rotation
operator) to improve the precision of the solution. At the
same time, in the constraint-handling techniques, the two-
stage strategy can obtain the candidate solutions belong-
ing to feasible domain in the first stage and then use the
feasible solution as the initial solution to find the optimal
solution. Thus, the STA with two-stage strategy has bet-
ter performance for constrained engineering optimization
problems.

5. CONCLUSIONS

This paper presents the STA with two-stage strategy to
solve various engineering optimization problems, which
include welded beam design, pressure vessel design, ten-

sion/compression spring design and power-dispatching
control system in the electrochemical process of zinc.
In these problems, the objective functions and constraint
functions are all nonlinear and nonconvex. The two-stage
strategy of STA means that in the early stage of an iterative
process, the feasible preference method is used to select a
“best” solution, whilst it is changed to the penalty func-
tion method in the later stage. Application results have
shown that STA can obtain better solution than other al-
gorithms in literature in terms of both effectiveness and
solution precision. Thus, STA can be considered as an
alternative global search algorithm that can be applied to
various engineering optimization problems.

However, since there are still some space to improve the
precision of the final results obtained by STA, in the fu-
ture, we will incorporate the gradient information into ro-
tation operator to improve the local search ability of STA,
and several deterministic optimization methods, such as
fmincon, GloptiPoly, can also be used to accelerate the
convergence speed of STA in the later iteration process.
Besides, Zhao et al. [50] have proposed a new stepwise
and piecewise approach to optimize the design of CO2

transportation which is worth learning to improve the per-
formance of STA. Thus, with the experience gained in this
field, the STA for dealing with constrained optimization
problem should be further studied in the future.
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